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Multivariable Calculus

Basic Vectors

� Thm 1: ‖cu‖ = |c| ‖u‖

� Thm 2: (unit vector in direction of a) = a
‖a‖

� Thm 3 [Dot product properties]:
a · b = b · a
a · (b + c) = a · b + a · c
(a + b) · c = a · c + b · c

(da) · b = d (a · b) = a · (db)
0 · a = 0
a · a = ‖a‖2

� Thm 4 [Dot product & angle]: a · b = ‖a‖ ‖b‖ cos θ

� Thm 5 [Orthogonality]: a ⊥ b ⇐⇒ a · b = 0

� Component (signed scalar): compa b = ‖b‖ cos θ = a·b
‖a‖

� Projection (vector): proja b = compa b× a
‖a‖ = a·b

a·aa

� Cross product: 〈a1, a2, a3〉 × 〈b1, b2, b3〉 :=

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =

〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉

� Thm 6: (a× b) ⊥ a and (a× b) ⊥ b

� Thm 7 [Cross prod. & angle]: ‖a× b‖ = ‖a‖ ‖b‖ sin θ

� Thm 8 [Cross product properties]:
a× b = − (b× a)
a× (b + c) = a× b + a× c

(a + b)× c = a× c + b× c
(da)×b = d (a× b) = a×(db)

� Scalar triple product (= signed vol. of parallelepiped):

a · (b× c) :=

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ =

a1 (b2c3 − b3c2) , a2 (b3c1 − b1c3) , a3 (b1c2 − b2c1)

� Thm 10 & 11 [Plane]:
n · r = n · r0 ⇐⇒ ax+ by + cz = ax0 + by0 + cz0 = d

� Thm 13 [Derivative properties for vectors]:
d
dt (r (t) + s (t)) = r′ (t) + s′ (t)
d
dt (c r (t)) = c r′ (t)
d
dt (f (t) r (t)) = f ′ (t) r (t) + f (t) r′ (t)
d
dt (r (t) · s (t)) = r′ (t) · s (t) + r (t) · s′ (t)
d
dt (r (t)× s (t)) = r′ (t)× s (t) + r (t)× s′ (t)

� Thm 14 [Arc length]: (length from a to b) =
∫ b
a
‖r′(t)‖ dt

� Vector rotation: 90° anticlockwise: 〈x, y〉 → 〈−y, x〉
90° clockwise: 〈x, y〉 → 〈y,−x〉

Surfaces

� Level curve of f(x, y) = horizontal trace (for functions in
two vars) = 2-D graph of f(x, y) = k for some constant k
Contour plot = numerous level curves on the same graph

� Level surface of f(x, y, z) = 3-D graph of f(x, y, z) = k
for some constant k.

Quadric surfaces

� Cylinder = infinite prism

� Elliptic paraboloid: x2

a2 + y2

b2 = z
c

� Hyperbolic paraboloid: x2

a2 −
y2

b2 = z
c

� Ellipsoid: x2

a2 + y2

b2 + z2

c2 = 1

� Elliptic cone: x2

a2 + y2

b2 −
z2

c2 = 0

�
Hyperboloid
of one sheet

: x2

a2 + y2

b2 −
z2

c2 = 1

�
Hyperboloid
of two sheets

: x2

a2 + y2

b2 −
z2

c2 = −1

Limits

� Limit: lim
(x,y)→(a,b)

f(x, y) = L

iff for any ε > 0 there exists δ > 0 such that

|f(x, y)− L| < ε whenever 0 <

√
(x− a)

2
+ (y − b)2 < δ

� Thm 15: To show limit does not exist, take the limit via
two different paths that have different limits

� Thm 16 & 17 [Limit theorems]: Limits may be taken
into addition, subtraction, multiplication, division

� Thm 18 [Squeeze theorem]:
If |f(x, y)− L| ≤ g(x, y) ∀(x, y) close to (a, b)
and lim

(x,y)→(a,b)
g(x, y) = 0

then lim
(x,y)→(a,b)

f(x, y) = L

� Continuity: f is continuous at (a, b)
⇐⇒ lim

(x,y)→(a,b)
f(x, y) = f(a, b)

i.e. the limit exists and the f is valid at (a, b)

� Thm 20 & 21 [Continuity theorems]:
If two functions are continuous (at (a, b)), then their sum,
difference, product, quotient, and composition are
continuous too (quotient requires denominator 6= 0)

� All polynomials, trigonometric, exponential, and rational
functions are continuous

Partial Derivatives

� Thm 2 [Clairaut’s theorem]: If fxy and fyx are both
continuous on disk containing (a, b) then fxy(a, b)=fyx(a, b)

� Thm 3 [Tangent plane eqn]:
Given surface z = f(x, y) with point (a, b):
- normal vector: 〈fx(a, b), fy(a, b),−1〉
- tangent plane: z = f(a, b) + fx(a, b)(x−a) + fy(a, b)(y−b)

� Multivariable differentiability:
z = f(x, y) is differentiable at (a, b) if
4z = fx(a, b)4x+ fy(a, b)4y + ε14x+ ε24y
(with vanishing ε1 and ε2) i.e. zooming in to (a, b) will
make surface approximate tangent plane

� fx & fy are continuous at (a, b) =⇒ f is diff.able at (a, b)
� f is differentiable at (a, b) =⇒ f is continuous at (a, b)

Differentiation Techniques

� Chain rule: For z = f(x, y) and x = x(t), y = y(t):

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

For z = f(x, y) and x = x(s, t), y = y(s, t):

∂z

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

� Thm 11 [Implicit differentiation]: Given F (x, y, z) = 0
that defines z implicitly as a function of x and y, then:

∂z

∂x
= −Fx(x, y, z)

Fz(x, y, z)

∂z

∂y
= −Fy(x, y, z)

Fz(x, y, z)

provided Fz(x, y, z) 6= 0

� Quotient rule:

f(x) =
g(x)

h(x)
=⇒ f ′(x) =

g′(x)h(x)− g(x)h′(x)

[h(x)]
2

� F (x, y, z) = 0 =⇒ normal vector = 〈Fx, Fy, Fz〉

Gradient Vectors

� Thm 13 [Dir. derivatives]: Duf(x, y) = Of(x, y) · u
where Of(x, y) := 〈fx, fy〉 = gradient vector at (x, y)
and u := direction (as unit vector)

� Direction of Of(x, y) = steepest upward direction
‖Of(x, y)‖ = steepest upward gradient

� Thm 1 [Level curve ⊥ Of ]: 0 6= Of(x0, y0) is normal to
the level curve f(x, y) = k that contains (x0, y0)

� Thm 2 [Level surface ⊥ OF ]: 0 6= OF (x0, y0, z0) is
normal to the level surface F (x, y, z) = k that contains
(x0, y0, z0)

Critical Points, Minimum, Maximum
given f(x, y) : D → R

� Local maximum: (a, b) is a local maximum if
f(x, y) ≤ f(a, b) for all points (x, y) near (a, b)

� Local minimum: (a, b) is a local minimum if
f(x, y) ≥ f(a, b) for all points (x, y) near (a, b)

� Saddle point: (a, b) is a saddle point if
fx(a, b) = fy(a, b) = 0 and every neighbourhood at (a, b)
contains points (x, y) ∈ D for which f(x, y) < f(a, b) and
points (x, y) ∈ D for which f(x, y) > f(a, b)

� Critical point: (a, b) is a critical point if
fx(a, b) = fy(a, b) = 0
(If point P is a local maximum/minimum then:
fx(P ) and fy(P ) both exist =⇒ P is a critical point)

� Local maximum/minimum and critical points cannot be
boundary points

� Absolute maximum: f has an absolute max. at (a, b) if
∀(x, y) ∈ D, f(x, y) ≤ f(a, b)

� Absolute minimum: f has an absolute min. at (a, b) if
∀(x, y) ∈ D, f(x, y) ≥ f(a, b)

� Boundary point of R: point (a, b) such that every disk
with center (a, b) both contains points in R and not in R

� Closed set: Set that contains all its boundary points

� Bounded set: Set that is contained in some (finite) disk

� Thm 14 [Extreme Value Theorem]:
If f(x, y) is continuous on a closed & bounded set D, then
the absolute maximum & minimum must exist

� To find absolute maximum/minimum of f with domain D:
1) Find the values of f at all critical points in D
2) Find the extreme values of f on the boundary of D
3) Take largest/smallest of the values of Steps 1 & 2

Lagrange Multipliers

� Suppose f(x, y) and g(x, y) are differentiable functions such
that Og(x, y) 6= 0 on the constraint curve g(x, y) = k.

If (x0, y0) is a (local) maximum/minimum of f(x, y)
constrained by g(x, y) = k, then Of(x0, y0) = λOg(x0, y0)
for some constant λ (the Lagrange multiplier).

� To find the maximum/minimum points of f(x, y)
constrained by g(x, y) = k, we solve{

Of(x0, y0) = λOg(x0, y0)
g(x0, y0) = k

for x0, y0, λ.



Integration Techniques

� Integration by parts:∫
u
dv

dx
dx = u v −

∫
du

dx
v dx

Area & Volume Integrals

� Thm 4 [Fubini’s theorem]:
If f is continuous on rectangle R = [a, b]× [c, d] then:∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

� Region types (double integration):
Type I: D = {(x, y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
Type II:D = {(x, y) : c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}

� Polar coords. ←→ rectangular coords.:

x = r cos θ

y = r sin θ

r =
√
x2 + y2

θ = atan2(y, x)

� Integrating over a polar rectangle:
If R = {(r, θ) : 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β} then:∫∫

R

f(x, y) dA =

∫ β

α

∫ b

a

f(r cos θ, r sin θ) r dr dθ

� Region types (polar):
Type I: D = {(r, θ) : 0 ≤ a ≤ r ≤ b, g1(r) ≤ θ ≤ g2(r)}
Type II:D = {(r, θ) : α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}

� Region types (triple integration):
Type I: E = {(x, y, z) : (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}
Type II: E = {(x, y, z) : (y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z)}
Type III:E = {(x, y, z) : (x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)}

� Spherical coords. ←→ rectangular coords.:

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

ρ =
√
x2 + y2 + z2

θ = atan2(y, x)

φ = cos−1
z

ρ

= cos−1

(
z√

x2 + y2 + z2

)

� Integrating over a spherical wedge:
If E = {(ρ, θ, φ) : 0 ≤ a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ φ ≤ d} then:∫∫∫

E

f(x, y, z) dV =∫ d

c

∫ β

α

∫ b

a

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφdρ dθ dφ

� Jacobian (2D) of transformation (u, v) 7→ (x, y):

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u∫∫
R

f(x, y) dA =

∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

� Jacobian (3D) of transformation (u, v, w) 7→ (x, y, z):

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∫∫∫
R

f(x, y, z) dV =∫∫∫
S

f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw
� Consider choosing transformation to make bounds constants

� Using
∣∣∣∂(x,y)∂(u,v)

∣∣∣ =
∣∣∣∂(u,v)∂(x,y)

∣∣∣−1 and appropriate f(x, y) may

avoid needing to express x, y in terms of u, v

Line Integrals

� Line integral for scalar field:
If curve C is given by r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b then:∫

C

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t)) ‖r′(t)‖ dt

Answer is indep. of orientation and parameterization of r(t)

� Line integral for vector field:
If curve C is given by r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b then:∫

C

F(x, y, z) · dr =

∫ b

a

F(x(t), y(t), z(t)) · r′(t) dt =∫
C

(P dx+Qdy +Rdz) =

∫ b

a

Px′(t)dt+

∫ b

a

Qy′(t)dt+

∫ b

a

Rz′(t)dt

Answer is its negation when r(t) has opposite orientation

Conservative vector fields

� A vector field F is conservative on D iff F = Of
for some scalar function f on D
f is called the potential function of F

� To recover f from F = 〈fx, fy〉, do partial integration of fx
to get g(x, y) + h(y) [= f(x, y)] (where h(y) is the unknown
integration constant), then differentiate g(x, y) + h(y) w.r.t.
y and compare with fy to determine h(y)

� Test for conservative field (2D):
If F = 〈P,Q〉 is a vector field in an open (excludes all
boundary points) and simply-connected (has no “holes”)
region D and both P and Q have continuous first-order
partial derivatives on D then:

∂Q

∂x
≡ ∂P

∂y
⇐⇒ F is conservative on D

� Test for conservative field (3D):
F = 〈P,Q,R〉 (similar requirements as 2D case):

∂Q

∂x
≡ ∂P

∂y
,
∂R

∂y
≡ ∂Q

∂z
,
∂P

∂z
≡ ∂R

∂x
⇐⇒ F is conservative

on D

� Fundamental theorem for line integrals:
If F is conservative with potential function f , and C is a
smooth curve from point A to point B, then:∫

C

F · dr =

∫
C

Of · dr = f(B)− f(A)

=⇒ line integral for conservative field is path-independent

� Two paths with different line integrals but same initial and
terminal points =⇒ vector field is not conservative

Green’s Theorem

� If C is a positively oriented (anticlockwise), piecewise
smooth, simple closed curve in the plane, and D is the
region bounded by C, and F = 〈P,Q〉 then:∫

C

F · dr =

∫
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

(useful when ∂Q
∂x −

∂P
∂y is simpler than P and Q)

� !!! Look out for holes (÷ 0) – use extended Green’s theorem

� !!! When borrowing other question result, check orientation

� Reverse application of Green’s theorem:
If A is the area of D, then (choose whichever is convenient):

A =

∫
C

x dy = −
∫
C

y dx =
1

2

∫
C

(x dy − y dx)

Parameterize the boundary curve in terms of t (a ≤ t ≤ b)

(e.g.
1

2

∫ b

a

(
x(t)

dy

dt
− y(t)

dx

dt

)
dt )

Surface Integrals

� Parametric form of a surface in R3:
r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 , (u, v) ∈ D

� Smooth surface: A surface that is parameterized by
r(u, v) where (u, v) ∈ D, such that ru and rv are continuous
and ru × rv 6= 0 ∀ (u, v) ∈ D

� Thm 6 [Normal vector of parametric surface]:
If a smooth surface S has parameterization
r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 , (u, v) ∈ D then:

ru(a, b)× rv(a, b) is normal to S at (x(a, b), y(a, b), z(a, b))

� Thm 7 [Surface integral for scalar field]:
If a smooth surface S has parameterization
r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 , (u, v) ∈ D then:∫∫

S

f(x, y, z) dS =

∫∫
D

f(x(u, v), y(u, v), z(u, v)) ‖ru×rv‖ dA

� Thm 7a [Surface integral special case z = g(x, y)]:
If S is the surface z = g(x, y) where (x, y) ∈ D then:

∫∫
S

f(x, y, z) dS =

∫∫
D

f(x, y, g(x, y))

√(∂g
∂x

)2
+

(
∂g

∂y

)2
+1

dA
� Orientable surface: two-sided surface

Positive orientation: outward from enclosed region

� Thm 6 [Surface integral for vector field]:
If a smooth surface S has parameterization
r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 , (u, v) ∈ D then:∫∫

S

F · dS =

∫∫
S

F · n̂ dS =

∫∫
D

F · (ru × rv) dA

� Thm 6a [Surface integral special case z = g(x, y)]:
If F = 〈P,Q,R〉, and S is the surface z = g(x, y) where
(x, y) ∈ D, then the flux in the upward orientation:∫∫

S

F · dS =

∫∫
D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

Vector Differential Operator

O =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉

Divergence

If F = 〈P,Q,R〉 then:

div F = O · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

Gauss’ theorem

If E is a solid region with piecewise smooth boundary surface
S with positive (outward) orientation then:∫∫

S

F · dS =

∫∫∫
E

div F dV

Curl

If F = 〈P,Q,R〉 then:

curl F = O× F =

〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉

Stokes’ theorem

If S is a surface with a boundary curve C (positively oriented
w.r.t. S) then: ∫

C

F · dr =

∫∫
S

curl F · dS

Positive orientation of boundary curve:
If surface S has unit normals pointing towards you, then the
positive orientation of boundary curve C goes anti-clockwise

Trigonometric Formulae

Double angle

sin 2x = 2 sinx cosx

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tanx

1− tan2 x
Triple angle

sin 3x = 3 sinx− 4 sin3 x

cos 3x = 4 cos3 x− 3 cosx
Pythagorean

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

cot2 x+ 1 = csc2 x

Integrals∫
sin2 x dx =

1

4
(2x− sin 2x)∫

cos2 x dx =
1

4
(2x+ sin 2x)∫

tan2 x dx = tanx− x∫
sin3 x dx =

1

12
(cos 3x− 9 cosx)∫

cos3 x dx =
1

12
(sin 3x+ 9 sinx)∫

sinx cosx dx = −1

2
cos2 x+ C1

=
1

2
sin2 x+ C2

Sum of angles

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

tan(α± β) =
tanα± tanβ

1∓ tanα tanβ

cot(α± β) =
cotα cotβ ∓ 1

cotβ ± cotα


